Chemistry 116 - Fall 2021 Dr. Audrey Dell Hammerich Discussion Worksheet - Week 10

1. The reaction for the formation or breakdown of ammonia can be written

a)	$N_2 + 3H_2 \iff 2 NH_3$	b)	$1/2 N_2 + 3/2 H_2 \iff NH_3$
c)	$1/3 N_2 + H_2 \iff 2/3 NH_3$	d)	$NH_3 \iff 1/2 N_2 + 3/2 H_2$

e) Write the equilibrium constant expression for each of the above gas phase reactions.

f) Determine the numerical value of *K* for reaction a) if at 472°C and a total pressure of 10.0 atm the equilibrium mixture of gases consists of 24.58 mol percent N₂ and 73.76 mol percent H₂. $[K_P = 2.79 \times 10^{-5}]$

2. What is the value of *K* for the following reaction if an equilibrium mixture contains 1.0 mol Fe, 1.0×10^{-3} mol O₂, and 2.0 mol Fe₂O₃ in a 2.0-L container? [8.0×10⁹]

$$4 \text{ Fe}(s) + 3O_2(g) \iff 2 \text{ Fe}_2O_3(s)$$

3. If the equilibrium mixture for the following reaction contains 0.500 atm CO, 0.500 atm H₂O, and 1.00 atm CO₂, what is the partial pressure of H₂ when $K_p = 1.845$? [0.461 atm]

$$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$$

4. Determine the equilibrium concentration of HI for the following reaction when the equilibrium concentrations of H₂ and I₂ are both 0.0010 mol/L and K = 55.6. [0.0075 mol/L]

$$H_2(g) + I_2(g) \iff 2 HI(g)$$

5. Determine the equilibrium pressure of NO₂ if the equilibrium pressure of N₂O₄ is 2.71 atm at a temperature where $K_p = 0.133$ for: [0.600 atm]

$$N_2O_4(g) \iff 2 NO_2(g)$$

6. From the following 427°C equilibrium constants

- 1) $\operatorname{Na_2O}(s) \iff 2 \operatorname{Na}(l) + \frac{1}{2} \operatorname{O_2}(g)$ $K_1 = 2 \times 10^{-25}$
- 2) $\operatorname{NaO}(g) \iff \operatorname{Na}(l) + \frac{1}{2} \operatorname{O}_2(g)$ $K_2 = 2 \times 10^{-5}$
- 3) $\operatorname{Na_2O_2(s)} \iff 2 \operatorname{Na}(l) + \operatorname{O_2(g)}$ 4) $\operatorname{NaO_2(s)} \iff \operatorname{Na}(l) + \operatorname{O_2(g)}$ $K_4 = 3 \times 10^{-14}$

determine the values of the equilibrium constants (K_p) for the following:

a)
$$\operatorname{Na_2O}(s) + \frac{1}{2} \operatorname{O_2}(g) \iff \operatorname{Na_2O_2}(s)$$
 [4000]

b)
$$NaO(g) + Na_2O(s) \iff Na_2O_2(s) + Na(l)$$
 [0.08]

c)
$$2 \operatorname{NaO}(g) \iff \operatorname{Na_2O_2}(s)$$
 [8×10¹⁸]

	$4 \operatorname{NH}_3(g)$	+	$7 O_2(g)$	<=>	$4 \operatorname{NO}_2(g)$	+	$6 \operatorname{H}_2\operatorname{O}(g)$
Initial	0.30 atm		0.70 atm		0		0
Change							
Equilibrium							

8. Solid molybdenum is placed in contact with gaseous CH_4 at a pressure of 0.68 atm in a sealed empty reaction vessel at 300 K. After equilibrium is reached the total pressure in the container is 1.13 atm.

 $2 \operatorname{Mo}(s) + \operatorname{CH}_4(g) \iff \operatorname{Mo}_2 \operatorname{C}(s) + 2 \operatorname{H}_2(g)$

[0.90 atm]

[0.14]

a) What is the equilibrium pressure of H_2 ?

b) Write the expression for $K_{\rm P}$.

c) Determine the numerical value of K_c .

9. Determine K_p if the initial partial pressures are: $P_{NO} = 0.70$ and $P_{O_2} = 0.55$ atm and, when equilibrium has been reached, $P_{NO_2} = 0.20$ atm for: [0.36]

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \iff 2 \operatorname{NO}_2(g)$$

10. The following reaction was run in a 3.00 L vessel at a temperature where K = 115:

$$H_2(g) + F_2(g) \iff 2 HF(g)$$

a) If 6.00 mol of all three components were initially added what are their equilibrium concentrations? $[H_2] = [F_2] = 0.47 \text{ M}, \text{ [HF]} = 5.06 \text{ M}$

b) If 3.00 mol of H_2 and 6.00 mol of F_2 were initially added what are all the equilibrium concentrations? $[H_2] = 0.03 \text{ M}, [F_2] = 1.03 \text{ M}, [HF] = 1.94 \text{ M}$