Chemistry 116 - Fall 2021

Dr. Audrey Dell Hammerich

Discussion Worksheet - Week 10

1. The reaction for the formation or breakdown of ammonia can be written
a) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
b) $1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \Leftrightarrow \mathrm{NH}_{3}$
c) $1 / 3 \mathrm{~N}_{2}+\mathrm{H}_{2} \Leftrightarrow 2 / 3 \mathrm{NH}_{3}$
d) $\mathrm{NH}_{3} \Leftrightarrow 1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2}$
e) Write the equilibrium constant expression for each of the above gas phase reactions.
f) Determine the numerical value of K for reaction a) if at $472^{\circ} \mathrm{C}$ and a total pressure of 10.0 atm the equilibrium mixture of gases consists of 24.58 mol percent N_{2} and 73.76 mol percent H_{2}. [$K_{\mathrm{P}}=2.79 \times 10^{-5}$]
2. What is the value of K for the following reaction if an equilibrium mixture contains $1.0 \mathrm{~mol} \mathrm{Fe}, 1.0 \times 10^{-3} \mathrm{~mol}$ O_{2}, and $2.0 \mathrm{~mol} \mathrm{Fe} e_{2} \mathrm{O}_{3}$ in a $2.0-\mathrm{L}$ container?
$\left[8.0 \times 10^{9}\right]$

$$
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

3. If the equilibrium mixture for the following reaction contains $0.500 \mathrm{~atm} \mathrm{CO}, 0.500 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O}$, and $1.00 \mathrm{~atm} \mathrm{CO}_{2}$, what is the partial pressure of H_{2} when $K_{\mathrm{p}}=1.845$?
[0.461 atm]

$$
\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)
$$

4. Determine the equilibrium concentration of HI for the following reaction when the equilibrium concentrations of H_{2} and I_{2} are both $0.0010 \mathrm{~mol} / \mathrm{L}$ and $K=55.6$.
[$0.0075 \mathrm{~mol} / \mathrm{L}$]

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)
$$

5. Determine the equilibrium pressure of NO_{2} if the equilibrium pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 2.71 atm at a temperature where $K_{\mathrm{p}}=0.133$ for:
[0.600 atm]

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)
$$

6. From the following $427^{\circ} \mathrm{C}$ equilibrium constants
1) $\mathrm{Na}_{2} \mathrm{O}(s) \Leftrightarrow 2 \mathrm{Na}(l)+1 / 2 \mathrm{O}_{2}(g)$

$$
K_{1}=2 \times 10^{-25}
$$

2) $\mathrm{NaO}(g) \Leftrightarrow \mathrm{Na}(l)+1 / 2 \mathrm{O}_{2}(g)$
$K_{2}=2 \times 10^{-5}$
3) $\mathrm{Na}_{2} \mathrm{O}_{2}(s) \Leftrightarrow 2 \mathrm{Na}(l)+\mathrm{O}_{2}(g)$
$K_{3}=5 \times 10^{-29}$
4) $\mathrm{NaO}_{2}(s) \Leftrightarrow \mathrm{Na}(l)+\mathrm{O}_{2}(g)$

$$
K_{4}=3 \times 10^{-14}
$$

determine the values of the equilibrium constants $\left(K_{\mathrm{p}}\right)$ for the following:
a) $\mathrm{Na}_{2} \mathrm{O}(s)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(s)$
b) $\mathrm{NaO}(g)+\mathrm{Na}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(s)+\mathrm{Na}(l)$
c) $2 \mathrm{NaO}(g) \longleftrightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(s)$
$\left[8 \times 10^{18}\right]$
7. Complete the following table of changes.

	$4 \mathrm{NH}_{3}(g)$	+	$7 \mathrm{O}_{2}(g)$	\Leftrightarrow	$4 \mathrm{NO}_{2}(g)$
		+	$6 \mathrm{H}_{2} \mathrm{O}(g)$		
Initial	0.30 atm		0.70 atm	0	0
Change					

Equilibrium
8. Solid molybdenum is placed in contact with gaseous CH_{4} at a pressure of 0.68 atm in a sealed empty reaction vessel at 300 K . After equilibrium is reached the total pressure in the container is 1.13 atm .

$$
2 \mathrm{Mo}(s)+\mathrm{CH}_{4}(g) \quad \Leftrightarrow \quad \mathrm{Mo}_{2} \mathrm{C}(s)+2 \mathrm{H}_{2}(g)
$$

a) What is the equilibrium pressure of H_{2} ?
[0.90 atm]
b) Write the expression for K_{P}.
c) Determine the numerical value of K_{c}.
9. Determine K_{p} if the initial partial pressures are: $P_{\mathrm{NO}}=0.70$ and $P_{\mathrm{O}_{2}}=0.55 \mathrm{~atm}$ and, when equilibrium has been reached, $P_{\mathrm{NO}_{2}}=0.20 \mathrm{~atm}$ for:

$$
\begin{equation*}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g) \tag{0.36}
\end{equation*}
$$

10. The following reaction was run in a 3.00 L vessel at a temperature where $K=115$:

$$
\mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \Leftrightarrow 2 \mathrm{HF}(g)
$$

a) If 6.00 mol of all three components were initially added what are their equilibrium concentrations?

$$
\left[\mathrm{H}_{2}\right]=\left[\mathrm{F}_{2}\right]=0.47 \mathrm{M},[\mathrm{HF}]=5.06 \mathrm{M}
$$

b) If 3.00 mol of H_{2} and 6.00 mol of F_{2} were initially added what are all the equilibrium concentrations?

$$
\left[\mathrm{H}_{2}\right]=0.03 \mathrm{M},\left[\mathrm{~F}_{2}\right]=1.03 \mathrm{M},[\mathrm{HF}]=1.94 \mathrm{M}
$$

